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Introduction 
Polynomials appear in a wide variety of areas of 
mathematics and science. For example, they are used to 
form equations, which encode a wide range of problems, 
from elementary word problems to complicated 
problems.In science, they are used to define polynomial 
functions, which appear in settings ranging from basic 
chemistry and physics to economics and social science; 
they are used in calculus and numerical analysis to 
approximate other functions. Notable among the well-
known polynomials are the orthogonal polynomials. 
Orthogonal polynomial sequence is a family of 
polynomials such that any two different polynomials in the 
sequence are orthogonal to each other under some inner 
product. The first orthogonal polynomials were the 
Legendre polynomials. Then came the Chebyshev 
polynomials, the general Jacobi polynomials, the Hermite 
and the Laguerre polynomials. All these classical 
orthogonal polynomials play an important role in many 
applied problems. 
Asymptotic formulae for orthogonal polynomials were 
first discovered by G. Szegö, Szego (1975).  Lanczos, C. 
(1938) introduced Chebyshev polynomials as trial 
function.Several researchers have employed these 
polynomials as trial functions to formulate algorithms (see 
Shampine and Watts (1969), Tanner (1979), Dahlquist 
(1979), Jator (2007), Awoyemi (1991)). We note that the 
zeros of the Chebyshev's polynomial of the first kind, the 
zeros of the Legendre's polynomial and even other 
polynomials can also be chosen but our keen interest is to 
derive a new class of polynomials for general use. The 
desire for increase in accuracy and efficiency of numerical 
methods has motivated several authors to propose methods 
for solving initial value problems (Ramos (2016), Vigo-
Aguiar and Ramos (2006), Simos (2002)).  
In this work, we shall employ a non-negative weight 
function to construct a class of orthogonal polynomials 
which will serve as trial functions to formulate numerical 
algorithms for the solution of second order initial value 
problems.  
Construction of orthogonal basis function 

Let the function )(xqn , the quantity to be evaluated be 

defined as; 
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on the real interval [a, b], where )(xqr  must satisfy the 

orthogonal property 
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For the purpose of constructing the basis function, we 
adopt the approach discussed extensively in Adeyefa and 
Adeniyi (2015) and use additional property (the 

normalization) 1)1( =nq  where our weight functions is 

defined as 1)( 2 −= xxw .  
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Applying the normalization equation, (3) gives;  
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Solving (4) and (5) and substituting the outcomes into (3), 
we have; 
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When r = 2 in (5), 
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Taking;  
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we obtain; 
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Solving (8), (9), (10) and substituting the resulting values 
into (7), we have; 
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In the same vein, 4),( ≥nxqn are developed. The first 

eleven of this class of orthogonal polynomials are listed 
hereunder. 
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This set of polynomials shall be referred to as ADEM-B 
Orthogonal polynomials. 
In the spirit of Golub and Fischer (1992), equation (12) 
must satisfy three-term recurrence relation 
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Therecursion formula for these orthogonal polynomials is 
therefore given as 
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This relation, along with the two polynomials P0(x) and 
P1(x), allows the new set of polynomials to be generated 
recursively. 
In the next section, we shall develop an algorithm to 
integrate second order differential equations where 
polynomials qn(x) shall be employed as basis function. 
Thereafter, the analysis of the method for convergence and 
implementation of the method through some test problems 
shall be presented. Finally, conclusion shall be made. 
 
Formulation of the Method 
In this section, our aim is to derive a continuous scheme 
from which a set of block formula is developed. To make 
this happen, we shall seek an approximant 
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to obtain the solution of second order initial value 
problems in ordinary differential equations. Transforming 
qn(x) in interval [-1,1] to [0,1], we have

ph
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x n −−

=
22 , where p varies as the method to be 

developed. 
Here, we formulate a step method and in (13), s and k are 
points of interpolation and collocation respectively. The 

procedure involves interpolating (13) at points s = 0,
3
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of equations are obtained as; 
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Substituting (14) into (13) yields the continuous implicit method; 
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Evaluating equation (15) at x = xn+m, m= 1,
4

1
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1
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1
yields the discrete equations; 
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To develop the block method from the continuous scheme, we adopt the general block formula proposed in Shampine and 
Watts (1969) in the normalized form given as 
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Evaluating the first derivative of (15) at x = xn+j, j = 0, 1,
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, substituting the resulting equations and equation 

(16) into (17)  and solving simultaneously gives a block formulae represented as 
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Equation (18) is our desired block method of which its basic properties shall be discussed briefly. The scheme cannot solve 
IVPs of order n (n > 2) except it is reduced to system of order two equations. 
 
Analysis of the Method 
Order and error constant  
Following Henrici (1962), the approach adopted in Fatunla 
(1991, 1994) and Lambert (1973),we define the local 
truncation error associated with equation (18) by the 
difference operator  
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In the spirit of Lambert (1973), equations (16) and (18) are 
of order p if  
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The 02 ≠+pC  is called the error constant and 
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pp
p xyhC ++

+  is the principal local truncation 

error at the point nx . 

According to the definition above, equations (16) and (18) 
are all of order 6 with the error constants  
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respectively. 
 
Zero stability of the method 
According to Lambert (1973), a linear multistep method is 
said to be zero-stable if no root of the first characteristic 

polynomial  )(Rρ has modulus greater than one and if 

every root of modulus one has multiplicity not greater than 
the order of the differential equation. 
To analyze the zero-stability of the method, we present 
(18) in vector notation form of column vectors  

( )T
reee K1= ,  ( )T

rddd K1= ,  

( )T
rnnm yyy ++= K1 , ( ) ( )T

rnnm ffyF ++= K1  

and matrices  )( ijaA =  ,  )( ijbB = . 

Thus, equation (18) forms the block formula 

nnmm hdfyAyhBFyA ++= 10 )(
       (20)

 

Where h  is a fixed mesh size within a block. 
Hence, based on the definition above, the scheme is zero 
stable. 
Region of absolute stability of the main methods 
For the region of absolute stability, the following 
definitions are considered. 
Given the stability polynomial  

( ) 0)()(, =−= zhzhz σρπ      (21) 

where  
22λhh =  and 

dy

df=λ  are assumed constants. 

The method (16) is said to be absolutely stable if for a 

given h  all the roots sz  of (21)  

satisfy 1<sz , s=1,2,…n,   where  hh λ=  

Definition: The region ℜ  of the complex h -plane such 

that the roots of ( ) 0, =hzπ  lies within the unit circle 

whenever h  lies in the interior of the region is called the 
region of absolute stability. 

Remark: Let ℜ  be the boundary of the region ℜ . Since 
the roots of the stability polynomial are continuous 

functions of h ,  h  will lie on ℜ  when one of the roots 

of the  ( ) 0, =hzπ  lies on the boundary of the unit circle. 

Thus we define (21) in terms of Euler’s number, θiexp
,as follows; 

0))(exp()(exp()),(exp( =−= θσθρθπ ihihi      
(22) 

So that, the locus of the boundary ℜ  is given by  

)(

)(
)( θ

θ

σ
ρθ

i

i

e

e
h =      (23) 

From (16), for yn+1, the first and second characteristic 
polynomials are as follows 

23)( 3

1

+−= zzzρ          (24) 

and,   
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so that the boundary of the region of absolute stability is  
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where
θiez = . 

Thus, the region of absolute stability is shown as Fig. 1. 
 

 
Fig. 1: Region of absolute stability of the method 
 
Consistency of the method 
According to Lambert (1973), a linear multistep method is 
said to be consistent if it has order at least one. Owing to 
this definition, equations (16) and (18) are consistent. 
Convergency of the method 
According to the theorem of Dahlquist (1979), the 
necessary and sufficient condition for a LMM to be  
convergent is to be consistent and zero stable. Since the 
method satisfies the two conditions hence it is convergent.  
 
Numerical Experiment 
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Table 1: Comparison of exact and approximate solution of Problem 1 
X Analytical Solution Approximate Solution Error 

0.0025 1.00125000065104227700 1.00125000065104227700 0 
0.005 1.00250000520835286470 1.00250000520835286470 0 
0.0075 1.00375001757827331690 1.00375001757827331690 0 
0.01 1.00500004166729167780 1.00500004166729167780 0 

0.0125 1.00625008138211573520 1.00625008138211573520 0 
0.015 1.00750014062974628450 1.00750014062974628450 0 
0.0175 1.00875022331755040640 1.00875022331755040650 0 
0.02 1.01000033335333476200 1.01000033335333476210 1.0e-19 

0.0225 1.01125047464541890790 1.01125047464541890800 1.0e-19 
0.025 1.01250065110270863570 1.01250065110270863580 1.0e-19 

 
Table 2: Comparison of exact and approximate solution of Problem 2 

X Analytical Solution Approximate Solution Error 
0.1 -0.10517091807564762480 -0.10517091807566185734 1.423254e-14 
0.2 -0.22140275816016983390 -0.22140275816027624933 1.0641543e-13 
0.3 -0.34985880757600310400 -0.34985880757629589142 2.9278742e-13 
0.4 -0.49182469764127031780 -0.49182469764186245872 5.9214092e-13 
0.5 -0.64872127070012814680 -0.64872127070115432592 1.02617912e-12 
0.6 -0.82211880039050897490 -0.82211880039212889554 1.61992064e-12 
0.7 -1.01375270747047652160 -1.01375270747287867870 2.4021571e-12 
0.8 -1.22554092849246760460 -1.22554092849587357400 3.4059694e-12 
0.9 -1.45960311115694966380 -1.45960311116161897590 4.6693121e-12 
1.0 -1.71828182845904523540 -1.71828182846528090740 6.235672e-12 

 
Table 3: Comparison of exact and approximate solution of Problem 3 

X Analytical Solution Approximate Solution Error 
0.0025 -0.09414091576184863991 -0.09414091576184863991 2e-21 
0.005 -0.09453240414233882994 -0.09453240414233882994 4e-21 
0.0075 -0.09492445160838763703 -0.09492445160838763702 5e-21 
0.01 -0.09531704439070030914 -0.09531704439070030914 4e-21 

0.0125 -0.09571016848098074811 -0.09571016848098074811 1e-21 
0.015 -0.09610380962911336911 -0.09610380962911336911 2e-21 
0.0175 -0.09649795334031607435 -0.09649795334031607435 0 
0.02 -0.09689258487226406553 -0.09689258487226406553 2e-21 

0.0225 -0.09728768923218421752 -0.09728768923218421752 4e-21 
0.025 -0.09768325117391973292 -0.09768325117391973293 8e-21 

 
Tables 1, 2 and 3 display the accuracy of the numerical 
results for initial value problems. Figs. 1, 2 and 3 reveal 
the desirability of the method since on the graph, no 
deviation is noticed at point.  
 

 
Fig. 2: Graphical comparison of the analytical solution and 
the solution of the new method using Problem 1. 

 
 

 
Fig. 3: Graphical comparison of the analytical solution and 
the solution of the new method using Problem 2. 
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Fig. 4: Graphical comparison of the analytical solution and 
the solution of the new method using Problem 3. 
 
Conclusion 
We have developed a technique to construct orthogonal 

polynomials using weight function, 1)( 2 −= xxw . 

Formulation of numerical integrators using the generated 
polynomials has been demonstrated. It has been shown 
that the introduced construction method can also be 
straightforwardly applied to obtain both implicit and 
explicit schemes. No comparison with existing methods is 
made as it is obvious that the method produces the 
analytical solution. We therefore recommend the technique 
for polynomial construction and general use of the 
polynomials as we hope to extend the approach to solve 
boundary value problems.  
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